If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2=231
We move all terms to the left:
5p^2-(231)=0
a = 5; b = 0; c = -231;
Δ = b2-4ac
Δ = 02-4·5·(-231)
Δ = 4620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4620}=\sqrt{4*1155}=\sqrt{4}*\sqrt{1155}=2\sqrt{1155}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1155}}{2*5}=\frac{0-2\sqrt{1155}}{10} =-\frac{2\sqrt{1155}}{10} =-\frac{\sqrt{1155}}{5} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1155}}{2*5}=\frac{0+2\sqrt{1155}}{10} =\frac{2\sqrt{1155}}{10} =\frac{\sqrt{1155}}{5} $
| -1+2x=x+12 | | 540=(2b-90) | | -16=k/12-7 | | -1/4t=3 | | -21-n=3(-2n-2) | | 4(j-85)-69=-65 | | (−7−8x)^7=0 | | 3x+1=4x-6x | | 540=90(b+45) | | (4)(−7−8x)^7=0 | | 4n+28=-5(n+7) | | (4)(−7−8x)7=0 | | 3(3x-4)=8x-14 | | -2-3=3+3x | | 3(2x+4)−2x+1=17 | | 3x+10=-50+2x | | 3x-1+6x=13 | | 540=90+b | | 8t+30-2t-16=-12 | | 8(9+9y)(6+7y)=0 | | -6a+3=-2a+1 | | 4(10x+10)=40x-3 | | 4x+5(0.7-x)=3 | | 8*(9+9*y)*(6+7*y)=0 | | 11x-3=5x=+11 | | 13+18f=17+17f | | 4x+5(0.7-x)=1 | | 8r2=3 | | 25p-23=77 | | (6a-54)-5a+27)=23 | | 3n^2-6n-8=0 | | 9x+25°=13x-19° |